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Abstract  

 

Chabris and Hearst (2003) produce new data on the question of the respective role 

of pattern recognition and forward search in expert behaviour. They argue that their data 

show that search is more important than claimed by Chase and Simon (1973). They also 

note that the role of mental imagery has been neglected in expertise research and propose 

that theories of expertise should integrate pattern recognition, search, and mental 

imagery. In this commentary, I show that their results are not clear-cut and can also be 

taken as supporting the predominant role of pattern recognition. Previous theories such as 

the chunking theory (Chase & Simon, 1973) and the template theory (Gobet & Simon, 

1996a), as well as a computer model (SEARCH; Gobet, 1997) have already integrated 

mechanisms of pattern recognition, forward search and mental imagery. Methods for 

addressing the respective roles of pattern recognition and search are proposed. 
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Introduction 

The respective roles of pattern recognition and search in expert problem solving have 

been an important topic of research in cognitive science.  Key results were provided by 

De Groot (1946; 1978), who showed that world-class chessplayers did not consider many 

more moves in their search than weaker (but still expert) players, but that they zoom in 

onto potentially good moves much earlier. As De Groot put it, after five seconds, world-

champion Max Euwe was further in his understanding of a position than a strong amateur 

after fifteen minutes. De Groot concluded that perception, giving rapid access to 

knowledge and honed by years of practice and study, was a key determinant of chess 

skill, a conclusion supported by the fact that skilled players are able to memorize briefly-

presented positions almost perfectly. 

 

De Groot’s ideas were further developed in Chase and Simon’s (1973) chunking 

theory, which proposed that pattern recognition explains both how experts show a 

remarkable memory for domain-specific material and how search can be carried out 

smoothly in the mind’s eye, where future positions are imagined. A contrasting view was 

taken by Holding (1985; 1992), who denied the importance of pattern recognition; 

instead, based on the way computers play chess, he proposed that chess skill is 

underpinned by search, general knowledge and evaluation. As a test for the respective 

importance of recognitional and calculational abilities, Calderwood et al. (1988) 

compared the quality of play in speed and in normal chess, and Gobet and Simon (1996a) 

reported data about Kasparov’s matches against national teams, where he played 

simultaneously against from four to eight players. In both cases, the loss in play quality 
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was considered small, thus supporting the hypothesis that pattern recognition plays a 

predominant role. 

 

Chabris and Hearst (2003) criticize these two studies, the first because the quality 

of moves was evaluated subjectively by two grandmasters (a measure that failed to 

distinguish class B and masters in normal play), the second because Gobet and Simon 

reported no information about variability in Kasparov’s play during these matches.
1
 They 

provide data from six editions of the Monaco tournament, where top-level grandmasters 

played both rapid games (less than 30 seconds per move, on average) and blindfold 

games.  In these blindfold games, played at about the same speed, players could not see 

the actual position. Chabris and Hearst compare these results with classical games (about 

3 minutes per move, on average) between the same players. In the three conditions, a 

strong computer program was used to identify blunders (in general, defined as actual 

moves evaluated 1.5 pawn below the program’s best choice).  

 

Chabris and Hearst found that players committed more blunders per 1,000 moves in 

rapid games (6.85) and blindfold games (7.63) than in classical games (5.02).  The 

frequency of blunders was statistically significantly smaller in classical games than in 

rapid and blindfold games. However, the frequencies were not reliably different in rapid 

and blindfold games. The same pattern of results occurred with more stringent criteria for 

                                                 
1
 This is corrected here. Including the results of four more matches reported in Gobet and 

Simon (2000b), the median performance of Kasparov’s results was 2682 Elo, with an 

interquartile range 203.5. 
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errors (difference larger than 3, 6, or 9 pawns instead of 1.5 pawn), and when the 

magnitude of errors was compared.  

 

Chabris and Hearst interpret these data as opposing Chase and Simon’s (1973) and 

Gobet and Simon’s (1996a) view that pattern recognition is more important than search 

in expert chess. They also criticize the assumption that move selection is based upon 

chunk recognition, as relatively small chunks are unlikely to help the choice of specific 

moves. Instead, they propose that higher-level processes (including associative factors, 

extensive search and evaluation) intervene between chunks and selection of moves. They 

suggest that “visualization, perhaps along with some additional as yet unidentified 

higher-conceptual or representational techniques, may provide a neglected missing link” 

(p. 644). They finally mention several implications of chess masters’ ability to play 

blindfold chess at high level and question the value of eye-movement studies of chess 

skill. They conclude that both swift pattern recognition and analyzing ahead seem 

important for chess skill and that the controversy over the dominance of either 

mechanism “appears currently unresolvable and perhaps fruitless” (p. 637).  

 

Previous theories of search and pattern recognition 

Chabris and Hearst’s conclusion about the necessity of combining the role of 

pattern recognition and search is not disputed. Indeed, it is what de Groot (1946),
2
 Chase 

                                                 
2
 While De Groot later disagreed with the details of Chase and Simon’s (1973) 

chunking theory, in particular about their emphasis on pattern recognition (e.g., chapter 9 

of De Groot & Gobet, 1996), his 1946 book clearly acknowledged both the role of 

perception in chess skill and the importance of look ahead (e.g., De Groot, 1946/1978, p. 
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and Simon (1973), Calderwood et al. (1988), Saariluoma (1990), Charness (1991), Gobet 

and Simon (1996a; 1998) and others have been proposing all along, and it is what has 

been more recently formalized in a computational model (Gobet, 1997). Probably due to 

the space constraints of the “short communication” medium, Chabris and Hearst kept 

their review of the literature to a minimum. This was unfortunate, as most of the 

theoretical conclusions they draw are either unfounded or duplicate previous work.  

 

To begin with, they suggest that visualization may provide “a neglected missing 

link” (p. 644) between pattern recognition and move selection, and that mental imagery 

has been neglected in expertise research. But this ignores the fact that mental imagery 

plays an essential role in Chase and Simon’s  influential chunking theory (hence the title 

“The mind’s eye in chess” in one of their papers), and that it was indeed a recurring 

theme in Simon’s studies of problem solving (Simon, 1972) and expertise, for example in 

physics (Larkin, Mc Dermott, Simon, & Simon, 1980) and in the role of diagrams in 

economics (Tabachnek-Schijf, Leonardo, & Simon, 1997).  

 

Chabris and Hearst (pp. 643-644) repeat a number of criticisms made earlier against 

the chunking theory by Holding (1985, 1992). They  contrast search mechanisms and 

initial pattern recognition of candidate moves, while Chase and Simon (1973; see also 

Gobet & Simon, 1998, 2000b, and Gobet, 1997) were very clear that pattern recognition 

                                                                                                                                                 

320). After all, De Groot devoted most of the 460 pages of is book to a detailed analysis 

of how the search for a good move is carried out by chess players! 
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occurs recursively during search. Two other criticisms—the relatively small size of the 

chunks, and the necessity for higher-conceptual knowledge structures—were successfully 

addressed in the template theory (Gobet & Simon, 1996b, 2000a),  which adds to the 

chunking theory the hypothesis that common chunks evolve into more complex structures 

having schema-like properties. 

 

Application of the template theory to the question of search led to a formal model, 

called SEARCH, which explicitly combines pattern recognition, search, and mental 

imagery (Gobet, 1997). SEARCH also includes assumptions about the time needed for 

cognitive operations, as well as assumptions about the “fuzziness” of the images kept in 

the mind’s eye. Chunks and templates favour deeper search, because they suggest 

potential moves automatically (templates also facilitate long-term memory encoding, 

maintenance of information in the mind’s eye, and more abstract search). On the other 

hand, they favour shorter search, as they provide powerful evaluations which cut down 

the need for search. The net product, as shown in computer simulations, is that average 

depth of search follows a power function of skill—a prediction consistent with the data.  

Given that SEARCH integrates the three components of chess skill identified by Chabris 

and Hearst, it is unfortunate that these authors did not refer to it in their discussion. In 

particular, an obvious prediction of the model is that “when more time is available, 

skilled players have both a greater opportunity to recognize more patterns as well as to 

analyze ahead” (Chabris & Hearst, p. 644).  
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The Monaco data and their analysis 

As with Gobet and Simon’s analysis of Kasparov’s data, the use of the naturalistic 

data provided by the Monaco tournaments raises new methodological problems, and it is 

important to mention some of these here, so that they can be overcome in future research. 

With current technology, the use of a computer program to assess the quality of moves is 

a mixed blessing. Granted, one gains in objectivity; however one has to content oneself 

with a rather blunt way of measuring errors—essentially only picking up gross tactical 

mistakes. A good case can be made that, particularly at the top level, games are lost more 

by the accumulation of small errors than by blunders (Jansen, 1992; Simon, 1974). As 

suggested by Chabris and Hearst, a more powerful—but also more complex and 

subjective—approach is to combine computer analysis with grandmasters’ opinion. 

 

Most importantly, there are problems with the interpretation of the data.
3
 As 

chunking-based theories predict that, rather unsurprisingly, a decrease in thinking time 

                                                 
3
 There are also problems with Chabris and Hearst’s data analysis: the use of the chi 

square statistic is inappropriate with their frequency data, as it violates the assumption of 

independence of the test (e.g., Lewis & Burke, 1949), at two levels of aggregation. 

Moves in a game depend upon the previous moves (e.g., the presence of a blunder may 

increase the likelihood of another blunder,  Krogius, 1976) and games are contingent 

upon previous games (e.g., a lost game may affect a player’s motivation and thus the 

likelihood of a blunder in the next game). A related problem is that a few players may 

have accounted for most of the blunders. 
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will lead to a decrement in the quality of play (e.g., Gobet & Simon, 1996a), the critical 

question is the extent of this decrement. Chabris and Hearst (p. 644) claim the decrement 

between classical and rapid games was “definite and substantial,” but this is disputable. 

With a more than sixfold decrease in thinking time between classical and rapid games, is 

a 36.5% increase in the number of blunders (from 5.02 to 6.85 per 1,000 moves) 

substantial? Or, using as reference class not the number of blunders, but the total number 

of moves played, a 0.183% increase? And, with respect to the magnitude of blunders,
4
 an 

increase of 0.49 pawn units? Without either quantitative theoretical predictions or 

information about the rate of blunders made by weaker players, it is simply impossible to 

tell. In any case, it could be equally reasonably argued that these results provide direct 

support for pattern-based recognition theories. If search was key, and assuming that the 

number of nodes visited during look-ahead search is proportional to thinking time, 

cutting this time by six would seem to produce a larger increment in the number of 

blunders than 36.5% (with number of blunders as reference class) or 0.183% (with 

number of moves as reference class), as observed. By contrast, pattern-recognition 

models, which emphasize highly selective search, are less sensitive to reduction in the 

number of nodes searched. 

 

Roles of pattern recognition and search: A fruitless controversy? 

Given that both are often intertwined, is it fruitful to talk about the dominance of 

pattern recognition over search? At least four reasons suggest that this is the case. First, 

                                                 
4
 Obviously, a blunder of 0.49 (half a pawn unit) is likely to make a difference in a master 

game. But, here, we are talking about the difference between blunder magnitudes.  
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research in computer science shows that knowledge and search can be varied 

independently. For example, Berliner (1981) provides estimates of how much search may 

be replaced by tactical, positional and strategic knowledge. Assuming that pattern 

recognition explains how knowledge is accessed efficiently in humans, these results 

could be used to design experiments with human players where the consequences of 

providing additional knowledge are studied. Second, there is clear experimental evidence 

that strong players can sometimes choose the optimal move with minimal search (in less 

than 10 seconds) (e.g., Charness, 1981). Further experiments could help specify the 

conditions that allow such rapid and selective search. 

 

Third, verbal protocols and the measures developed by De Groot (1946) provide a 

powerful means of disentangling the contribution of pattern recognition and search; in 

particular, theories emphasizing the predominance of either mechanism make differential 

predictions about how measures such as the number of moves searched and the degree of 

selectivity vary as a function of skill (Gobet, 1998). Finally, computational modelling 

may help generate testable predictions about the complex interplay between perception 

and search. For example, SEARCH (Gobet, 1997) makes quantitative predictions about 

how moves are generated during lookahead search, depending upon the skill level: with a 

network containing 150,000 chunks, approximating grandmaster level, 15% of the moves 

are generated by heuristics, 23% by chunks, and 62% by templates. 
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Blindfold chess 

My comments on blindfold chess will be short, as the Monaco data, while 

surprising, are open to the criticism (Chabris & Hearst, p. 646) that players may have 

used a more prudent style in this condition, which makes comparison with classical and 

rapid games difficult.  Moreover, Chabris and Hearst’s discussion of blindfold chess 

relies heavily on anecdotal evidence, some of which is disputable. For example, they 

defer to experts’ opinion to the effect that playing blindfold chess improves one’s skill, 

but one could equally point to other experts claiming that playing blindfold is useless, if 

not dangerous (e.g., Dextreit & Engle, 1981; Saariluoma, 1995). One could also argue 

that the direction of causality goes in the opposite direction: the ability to play blindfold 

chess is a consequence of chess skill, made possible by the presence of a large knowledge 

base of chunks and templates, and improving one’s ability to play blindfold chess may 

not benefit skill in standard chess (Gobet & Jansen, in press). This view gains credence 

inasmuch as the template theory explains the experimental results on blindfold chess 

reasonably well (Campitelli & Gobet, in press), and makes testable predictions: similar 

eye movements should be observed in blindfold chess as in normal chess.  

 

Conclusion 

Even with substantial implicit knowledge held in their evaluation function, 

computers need search spaces orders of magnitude larger than humans’ to match their 

level. But while computers can compensate the lack of knowledge by intensive search, 

humans cannot, both because of the prohibitive size of the search space and their 

information-processing limits. Instead, they have to rely upon selective search, made 
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possible by pattern recognition.  Chabris and Hearst provide valuable data, whose 

message is similar to Gobet and Simon’s (1996): reduction in thinking time leads to loss 

in the quality of play. The disagreement lies in the magnitude of this loss, and its 

consequences for theories of expertise. This article has argued that current theories, 

which integrate pattern recognition, search and mental imagery, provide clear-cut 

mechanisms that can be used to make quantitative predictions about the respective 

importance of pattern recognition and search. Far from fruitless, the pattern-recognition 

vs. search controversy  promises exciting research ahead. 
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